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Abstract

Preliminary designs for the next large accelerator
experiment envisioned for the Heavy Ion Fusion program,
the IRE (Integrated Research Experiment) use an induction
linac to accelerate multiple space-charge-dominated ion
beams to an energy of several hundred MeV, and focus
them at a target. This paper examines the effect of beam
and quadrupole misalignments on beam emittance in the
IRE.  The dependence of the centroid orbit on the scaling
of focusing parameters with z is analyzed.  PIC
simulations including misalignment give acceptable
emittance growth for present IRE designs.

1  INTRODUCTION
The Heavy Ion Fusion program is in the process of
designing the Integrated Research Experiment (IRE), a
multi-beam induction linac which would accelerate space-
charge-dominated driver-scale K+ beams to a few hundred
MeV and focus them onto a target.  Preliminary linac
designs consist of acceleration to ~8 MeV using
electrostatic quadrupole focusing (IRE Section 1), followed
by 2 sections of magnetic quadrupole focusing (IRE
Sections 2 and 3).  The phase advance per lattice period
without space charge, σ0 , and beam radius are kept
constant throughout the machine in order to maximize
transportable current and minimize cost.  This requires
different scaling of focusing parameters in different
sections.  In Section 1,  L/v , η ,  and K=qE’/m are
constant (L=lattice half period length, v=longitudinal (i.e.,
z) velocity, ηL=quadrupole length, and E′ =quadrupole
gradient).  In IRE Section 2, the beams are compressed
longitudinally with line charge density,λ,∝ v.  Here
L ∝ v1/2, and η and  K=qvB′/m are constant.  In IRE
Section 3, λ , L/v, and magnet length are held constant,
while quadrupole field gradient scales as 1/(1-2η/3)1/2 in
order to keep σ0  constant.  In this paper we examine the
effect of random misalignments of quadrupoles and initial
misalignment of the beam on emittance growth.  Centroid
motion and its dependence on the above scaling are
calculated for the present IRE design FODO lattice in
Section 2 of the paper.  In Section 3 a smooth
approximation is used to elucidate the results of Section 2.
Section 4 shows the emittance growth due to the
misalignments in the presence of image forces and magnet
fringe fields, as calculated by PIC simulations.

_______________________
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2  ALTERNATING GRADIENT
MODEL

We consider the motion of the centroid of a transverse
slice of the beam, and follow the treatment of L.
Smith[1].  A good approximation to the centroid orbit for
the present IRE design can be obtained by neglecting
image forces and other nonlinearities. Then linearity
implies that if the centroid is initially on axis with no
transverse velocity, its position at the center of the Nth
quadrupole, xN, is the sum of  the individual perturbations
from offsets of the upstream quadrupoles, so that [1]
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Here subscripts +n and -n refer to evaluation at the nth
focusing and defocusing quadrupole, respectively.  d+n is
the nth focusing quad x offset. C+n=(β+nK+n/v+n)

1/2sin(θ+n/2),
θ+n= K+n1/2ηL+n/v+n and C-n=(β−nK-n/v)1/2sinh(θ−n/2).  β is
the betatron function.  We assume that x and y are
decoupled, so that the same description holds for the y
dimension.  We are interested in random quadrupole
misalignments caused by physical limits on fabrication
and alignment, so we assume no correlation between the
offsets, and look at statistical behavior of centroid motion
averaged over many sets of quad displacements for the
lattice (average denoted by     “<  >”), with the rms “d” for
each quad equal to drms.  Then
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In IRE Section 1, only sin2((N-n)σ0) in Eq. (2), and
sin2[(N-n)σ0 )- σ0/2], are n-dependent, so the sum is easily
done.  For N>>1 the dependence of xN,rms=(<x2>N)1/2 on
σ

0
 is negligible, and we find that  

x d NN rms rms, ,≈ ζ1 (3)

Thus the centroid motion is to a good approximation (a
few percent for N>5) a random walk. ζ i≡θ+i0[2K+i0(β+i0+  
β-i0)]

1/2/2, where the subscript “0” refers to an initial value
in IRE Section i. For present IRE design parameters, ζ1 is
3.77, giving 1 mm centroid offset at the end of the 123
Section 1 lattice periods, for drms=0.0254  mm (1 mil).

In IRE Section 2, the accelerating gradient, V2′,
increases as v2.  We can approximate the gradient as
constant over each half lattice period, and equal to the
average of the gradient over that length, since ∆E/E <<1,
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where ∆E is the energy increase in a period.  Then it is
easy to show that v increases exponentially with z.  Using
the fact that L∝ v1/2, one can show that vn∝ (1-ng2L20)-2

and (Knβ+n)1/2∝ v1/2, with g2=qV2′/(mv2).  This
determines the n dependence of all quantities in Eq. (1).
The sum can then be done quite accurately if we expand to
2nd order in g2, since g2≈0.01.   For N>>1, and no
original offset or angle in IRE section 2, this gives

x d N c NN rms rms
c N c N

, ( )( ).≈ + + −ζ 2 2 3 21 12 2
2 2

(4)

N here is the number of lattice periods traversed in Section
2, and c2=g2L20.   ζ2=3.48 for the present design.  Note that
the growth of centroid displacement is considerably slower
than N1/2.  This is due to the decrease of β, which∝ v-1/2.
Further insight on this result follows in Section 3.

In similar fashion, using qV3′/(mv2)<<1, θn<<1, we
find for section 3:

x d N ZN Z NN rms rms, .≈ − − +ζ η η3
1
3 30

2 2
9 30

2 31 (5)

Here Z≡g30L30/2. For the present design, ζ3=3.48 and
Z=0.004 m.

The above results have been derived assuming no initial
offset or angle, in order to see the scaling for a particular
section.  They can easily be combined to calculate rms
centroid orbit through the accelerator, using the fact that
x′N,rms≈xN,rms/β+Ν for each section, and using the betatron
formalism to carry the final offset and angle for IRE
Sections 1 and 2 through the rest of the machine.  Results
agree with computer calculations to about 5%.    

3  SMOOTH APPROXIMATION
MODEL

The calculation of centroid offset in Section 2 is useful for
making accurate estimates of centroid evolution. However,
it is often useful for accelerator designers to have an even
simpler formula that gives more physical insight and is
amenable to incorporation into accelerator systems codes.
To that end we have used the smooth approximation to
represent the centroid orbit, but use the matrix
representation of the momentum impulse to calculate the
change in amplitude of a particle undergoing kicks from
displaced quads.  In the absence of quadrupole errors, the x-
equation of motion in the smooth approximation is:

 d2x/dt2 = -vz2kβ0
2x (6)

Here kβ0 ≡  σ0/2L.  Letting j  denote the number of
betatron periods from z=0, then dj/dz=kβ0/2π.
Transforming to j as the independent variable, we find

d2x/dj2 + (d lnωβ0/dj) dx/dj + 4π2x = 0 (7)

Here ωβ0 ≡  kβ0vz is the temporal betatron frequency.
From Eq.(7) it is clear that if ωβ0 increases with z, the
amplitude of the betatron motion decreases (in the absence
of displacement errors.)  We define the amplitude A
through the equation A2 ≡  x2 +x'2/kβ0

2.  If follows that

dA2/dj+ (1/2π2)(d lnωβ0/dj) (dx/dj)2 = 0 (8)

We now consider the change in the amplitude arising from
randomly displaced quads. The difference in position δx
and angle δx'  between the centroid position with and
without quad displacement after a focusing quad and drift is   
       δx = d−n (1 − cosθ + (1 / η − 1)sin θ )  and

       δx' = d−nθ sin θ / (ηL) (9)

and after a defocusing quad and drift is:

       δx = d+n (1 − cosh θ − (1 / η − 1)sinh θ )

       δx' = −d+nθ sinh θ / (ηL) (10)

The resulting change in amplitude when averaged over
different distributions of quad errors is given by  <δA2>
=<δx2>+<δx'2/kβ0

2>, where terms linear in δx  and δx'
average to zero.  Averaging Eq.(8) over error distributions
and adding effects from Eqs.(9), (10) yields the following
evolution equation for the average amplitude squared:

d

di
A A

d

di
f d2 2

0 0
2= − + ±ln ( , )ωβ σ η (11)

Here i  is a half lattice period (one quad and drift) and
f(σ0,η)≡(1/2)[(1-cosθ+(1/η-1)sinθ)2+(1-coshθ-((1/η-
1)sinhθ)2+(2θ/ησ0)

2(sin2θ+sinh2θ)]. θ≈[6η2(1-cosσ0)/(3-
2η)]1/4 (ref. [2]). Since f(σ0=0,η)=12/(3-2η) and variation
due to σ0 is small relative to that from η, for some
purposes the σ0=0 value of f(σ0,η) is adequate.

In order to compare the results from integrating Eq. (11) to
the results obtained from transfer matrices, we need to
evaluate the "smooth" component from each AG orbit.
This is accomplished by averaging over the lattice period
using the following procedure. We assume that the actual
position after i half-lattice periods may be expressed as
x(i)=Acos(σ0i/2+φ) + xLcos(πi).  We define the
quantitiesx(i) ≡ (1 / 4)[x(i − 1) + 2x(i) + x(i + 1)]  and
x' (i) ≡ (1 / 4)[x' (i − 1) + 2x' (i) + x' (i + 1)]. The smooth
amplitude is then given by

 A i x i x i k2 4 2 2
0

2 1 0 2 2( ) ( ( ) ' ( ) / ) /( cos( / ))= + +β σ  (12)

We compare integration of Eq. (11) with the numerical
amplitude found using Eq. (12)  in figure (1).
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Figure (1): <A2> vs. half-lattice number i , calculated
using Eq.(12) (upper), Eq. (11) (middle), and using the
σ0=0 value of  f(σ0,η) (lower).
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From Eq. (11) it is apparent that increasing ωβ0 with z
helps to damp out betatron oscillations and the question
arises as to whether advantage can be taken of this in
accelerator design.  We note that consideration of the
smooth envelope equation places the constraint that ωβ0 is
proportional to λ/a2 and for designs in which the beam
radius a is constant ωβ0 varies directly with the line charge
λ, suggesting that damping will generally accompany
bunch compression. Apertures and bunching schedules
should be chosen bearing in mind this relation.

4  PIC SIMULATION RESULTS FOR
OFF-AXIS BEAMS

Simulations using the 2d (transverse) version of the
WARP particle-in-cell code were done to investigate the
behavior of initially aligned and misaligned beams in the
IRE for the case of random quad misalignments. In order
to incorporate the effects of image charges on the beam,
the presence of conducting boundaries in the three sections
of the accelerator was included in the simulation. The
aperture of the accelerator was 2.86 cm in IRE Section 1,
and was increased to 3.36 cm in IRE Sections 2 and 3. In
IRE Section 1, the focusing field is generated by four
perfectly conducting electrostatic quadrupole rods with a
radius of 3.27 cm. The distance from the axis of the
accelerator to the tip of the quadrupoles was equal to the
aperture of 2.86 cm. The boundary in the drift spaces
between the quadrupoles  was a square conducting box,
12.26 cm on a side.  In Sections 2 and 3, instead of four
quadrupole rods, a circular conducting boundary of 3.36 cm
was used both in the quadrupoles and in the drift spaces.  

A beam of K+ ions was accelerated from 1.6 MeV to
200 MeV.  σ0 was set equal to 70°, average radius was 1.5
cm, and the perveance was 1.4 x 10-3.  

The rms random quadrupole offset was 0.0254 mm for
each of the transverse directions. In the simulations in
which the beam was initially misaligned, it was initially
off axis by 0.8 mm in one of the transverse directions at
the beginning of the first drift space. This resulted in an
initial beam centroid oscillation of 2 mm in amplitude.

In real AG focusing systems, since the quadrupole field
strength changes near the magnet ends, pseudo-octupole
and pseudo-dodecapole fringe fields there will act
nonlinearly on the beam [3]. These fringe fields were
included in a subsequent simulation, assuming that the
quadrupole field strength decreases smoothly near the
magnet edge with a fall-off length of 4.5 cm. This length
fills most of the drift space in the first few lattice periods,
but avoids overlap of the fields from one quad to the next.

If the fringe fields are included in the simulation, the
emittance growth is still small. Since the stepsize has to
be much smaller in order to resolve the fringe fields, the
simulation needed a much longer running time (67,500
user CPU seconds on a Cray J90).

The results of simulations using 80,000 particles on a
256 x 256 grid are shown in Table 1 and Figure 2. The

emittance behavior was alike in both transverse directions,
due to coupling by nonlinearities.  Maximum centroid
offset was approximately 1.5 mm, which is consistent
with the results of Sections 2 and 3 of this paper.

Table 1: PIC simulation results

Case
Particles

los t
Emittance

growth
Misaligned quads,
no fringe fields (a) 3 4.1%

Misaligned beam,
no fringe fields (b) 5 4.8%

Misaligned beam,
with fringe fields (c) 3 5.2%

Misaligned quads,
misaligned beam,
no fringe fields (d)

42 5.9%

0 100 200 300 400 500
Lattice Half Period Number

0.98

1

1.02

1.04

1.06

T
ra

ns
.N

or
m

.E
m

itt
an

ce
in

pi
m

m
m

ra
d

a
b
c

d

Figure 2: Increase in the normalized transverse emittance
in case of misalignments in the IRE.

We conclude that moderate misalignments in the IRE do
not lead to any significant emittance growth. These are
encouraging results for beam stability in the IRE.

5  CONCLUSIONS
We have derived very accurate formulas for the statistical
behavior of the beam centroid, given various practical
scalings of lattice parameters, and shown that increasing
λ/a2 with z can produce damping of the centroid offset.
These results can be used as design guidance, and to
estimate necessary aperture, given fabrication and
alignment tolerances. PIC simulations for a preliminary
IRE design show very small emittance growth (~5%) due
to beam and quadrupole misalignments for rms quad
displacement of 0.0254 mm.   
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